Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Vet J ; 14(1): 176-185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633196

ABSTRACT

Background: Food safety is a serious challenge in the face of increasing population and diminishing resources. Staphylococcus aureus is a critical foodborne pathogen characterized by its capability to secret a diverse range of heat-resistant enterotoxins. Antibiotic usage in dairy herds resulted in the occurrence of antimicrobial resistance (AMR) patterns among bacterial species, which were consequently transmitted to humans via dairy products. Lactic acid bacteria (LAB) produce bacteriocins, which provide an excellent source of natural antimicrobials with the further advantage of being environmentally friendly and safe. Aim: Detection of multidrug resistance (MDR) S. aureus isolates in concerned samples, molecular characteristics, biofilm production, and the inhibitory role of LAB against it. Methods: Random samples of raw milk and other dairy products were analyzed for S. aureus isolation. Phenotypic and genotypic assessment of AMR was performed, in addition to detection of classical enterotoxin genes of S. aureus. Finally, evaluation of the antimicrobial action of some Lactobacillus strains against S. aureus. Results: Incidence rates of presumptive S. aureus in raw milk, Kariesh cheese, and yogurt samples were 50%, 40%, and 60%, respectively. The highest resistance of S. aureus was to Kanamycin (100%) and Nalidixic acid (89.3%), respectively. (78.66%) of S. aureus were MDR. 11.1% of S. aureus carried mecA gene. In concern with enterotoxins genes, PCR showed that examined isolates harbored sea with a percentage of (22.2%), while sed was found in (11.1%) of isolates. Regarding biofilm production, (88.88%) of S. aureus were biofilm producers. Finally, agar well diffusion showed that Lactobacillus acidophilus had the strongest antimicrobial action against S. aureus with inhibition zone diameter ranging from 18 to 22 mm. Conclusion: There is a widespread prevalence of MDR S. aureus in raw milk and dairy products. Production of staphylococcal enterotoxins, as well as biofilm production are responsible for public health risks. Therefore, installing proper hygienic routines and harsh food safety policies at food chain levels is substantial.


Subject(s)
Anti-Infective Agents , Probiotics , Staphylococcal Infections , Humans , Animals , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Milk , Enterotoxins/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Microbial Sensitivity Tests/veterinary , Biofilms
2.
Molecules ; 26(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203991

ABSTRACT

Unlike other widely known Aloe species used for treatment of rheumatoid arthritis, this species suffers from a lack of sufficient studies on its biological and chemical characters. This is what drove us to perform this work to evaluate the in vivo anti-arthritic potential of its leaf ethanolic extract. The in vivo anti-arthritic activity of the leaf ethanolic extract at 100 and 200 mg/kg/day b.wt. was evaluated alone and in combination with methotrexate (MTX) using complete Freund's adjuvant. Serum levels of rheumatoid factor, anti-cyclic citrullinated peptide (anti-CCP), cytokines pro-inflammatory marker, inflammatory mediator serum levels, and oxidative stress mediators were analyzed, in addition to liver function. Orientin, isoorientin, ß-sitosterol, its palmitate and its glucoside were isolated. The combined therapy of MTX and the leaf ethanolic extract (especially at 200 mg/kg b.wt.) group showed better activity compared to MTX alone. Moreover, the combined therapy provided additional benefits in lowering the liver toxicity by comparison to MTX alone. We concluded that a synergetic combination of the leaf ethanolic extract and MTX is beneficial in the management of rheumatoid arthritis with fewer side effects on liver function, as well as the possibility of the leaf extract to stand alone as an effective natural anti-arthritic agent.


Subject(s)
Aloe/metabolism , Arthritis/drug therapy , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Freund's Adjuvant/adverse effects , Male , Methotrexate/pharmacology , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Plant Leaves/metabolism , Rats , Rats, Wistar
3.
Int J Food Microbiol ; 158(3): 225-31, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22884171

ABSTRACT

Food-borne pathogens may develop certain strategies that enable them to defy harsh conditions such as chemical sanitization. Biofilm formation represents a prominent one among those adopted strategies, by which food-borne pathogens protect themselves against external threats. Thus, bacterial biofilm is considered as a major hazard for safe food production. This study was designed to investigate the adherence and the biofilm formation ability of some food-borne pathogens on stainless steel and polypropylene surfaces using chip assay, and to validate regular sanitizing process (sodium hypochlorite 250 mg/L) for effective elimination of those pathogens. Sixteen pathogenic bacterial strains, previously isolated from raw milk and dairy products at Zagazig city, Egypt (9 Staphylococcus aureus, 4 Cronobacter sakazakii and 3 Salmonella enterica serovar Typhimurium), were chosen for this study. Strains showed different patterns of adherence and biofilm formation on tested surfaces with minor significance between surfaces. The ability of sodium hypochlorite to completely eradicate either adhered or biofilm-embedded pathogens varied significantly depending on the strain and type of surface used. Whilst, sodium hypochlorite reduced tested pathogens counts per cm² of produced biofilms, but it was not able to entirely eliminate neither them nor adherent Cronobacter sakazakii to stainless steel surface. This study revealed that biofilm is considered as a sustainable source of contamination of dairy products with these pathogens, and also emphasized the need of paying more attention to the cleaning and sanitizing processes of food contact surfaces.


Subject(s)
Bacteria/growth & development , Biofilms/growth & development , Dairying , Food Contamination/prevention & control , Milk/microbiology , Animals , Bacteria/isolation & purification , Bacterial Adhesion , Colony Count, Microbial , Cronobacter sakazakii , Disinfectants/pharmacology , Egypt , Food Handling , Food Microbiology , Plants , Polypropylenes , Salmonella typhimurium/drug effects , Sodium Hypochlorite/pharmacology , Stainless Steel , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...